
Knowledge Systems Laboratory Brochure 5P41 -RR00785-15

Introduction

The Knowledge Systems Laboratory (KSL) is an artificial intelligence (AI) research laboratory
of over 100 peopltfaculty, staff, and students -within the Departments of Computer Science
and Medicine at Stanford University. XSL is the new name for the interdisciplinary AI research
community that has evolved over the past two decades. Begun as the DENDRAL Project in 1965
and known as the Heuristic Progr amming Project from 1972 to 1984, the new organizhtion reflects
the diversity of the research now under way. The KSL is a modular laboratory, consisting of four
collaborating yet distinct groups with different research themes:

l The Heuristic Programming Project (HPP), Professor Edward A. Feigenbaum, scienti&
director--large, multi-use knowledge bases, blackboard systems, concurrent system architec-
tures for AI, automated software design, expert systems for science and engineering. Executive
director: Robert Engehnore. Research scientists: Harold Brown, Scott Clearwater, Bruce De-
lagi, Barbara Hayes-Roth, Hirotoshi Maegawa, H. Penny Nii, and Hirosbi Okuno.

l The HELIX Group, Professor Bruce G. Buchanan, scientific director-machine lesuning,
transfer of expertise, and problem solving. Research scientists: James Brinkley, Wiiam J.
Clancey, Craig Cornelius, Diana Forsythe, Barbara Hayes-Roth, Rich Keller, Catherine Man-
ago.

l The Medical Computer Science (MCS) Group, Associate Professor Edward H. Shortme,
scientific director (Department of Medicine with courtesy appointment in Computer Science)-
fundamental research and advanced biomedical applications in the area of AI and decision
sciences; includes the Medical Information Sciences (MIS) program. Assistant Professor: Mark
A. Musen; Research scientists: Gregory F. Cooper, Lawrence M. Fagan (Associate Director).

l The Symbolic Systcrns Resources Group (SSRG), Thomas C. Rindfleisch, scientific
director (joint appointment Departments of Computer Science and Medicine)-research on
and operation of distributed computing resources for AI research, including the SUMEX-AIM
facility. Assistant director: Wiiam J. Yeager.

The KSL is guided by an Executive Committee consisting of the four sublaboratory directors.
Tom Rindfieisch serves as overall KSL director.

This brochure s ummarizes the goals and methodology of the KSL, its research and academic
programs, its achievements, and the research environment of the laboratory.

Basic Research Goals and Methodology

Throughout a 20-year history, the KSL and its predecessors, DENDRAL and HPP, have con-
centrated on research in expert spstems- that is, systems using symbolic reasoning and problem-
solving processes that are based on extensive domain-specific knowledge. The KSL’s approach
has been to focus on applications that are themselves significant real-world problems, in domains
such as science, medicine, engineering, and education, and that also expose key, underlying AI
research issues. For the KSL, AI is largely an empiricical science. Resezuch problems are explored,
not by eramining strictly theoretical questions, but by designing, building, and experimenting with
programs that serve to test underlying theories.

The basic research issues at the core of the XSL’s interdisciplinary approach center on the
computer representation and use of lasge amounts of domain-specific knowledge, both factual and
heuristic (or judgmental). These questions have guided our work since the 1960s and are now of
central importance in all of AI research:

E. H. Shortliffe 226

5P41 -RR00785 15 Knowledge Systems Laboratory Brochure

1. Knowledge representation. How can the knowledge necessary for complex problem solving
be represented for its most effective use in automatic inference processes? Often, the knowledge
obtained from experts is heuristic knowledge, gamed from many years of experience. How can
this knowledge, with its inherent vagueness and uncertainty, be represented and applied? How
can knowledge be represented so that it can be used for many problem solving purposes?

2. Knowledge acquisition. How is knowledge acquired most efficiently-whether from human
experts, from observed data, from experience, or by discovery? How can a program discover
inconsistency and incompleteness in its knowledge base ? How can knowledge be added without
perturbing the established knowledge base unnecessarily?

3. Use of knowledge. By what inference methods can many sources of knowledge of diverse
types be made to contribute jointly and efficiently toward solutions? How can knowledge be
used intelligently, especially in systems with large knowledge bases, so that it is applied in an
appropriate manner at the appropriate time?

4. Explanation and tutoring. How can the knowledge base and the line of reasoning used
in solving a particular problem be explained to users? What constitutes a sticient or an
acceptable explanation for different classes of users?

5. System tools and architectures. What kinds of software tools and system architectures
can be constructed to make it easier to implement expert programs with greater complexity
and higher performance? What kinds of systems can serve as vehicles for the cumulation of
knowledge of the field for the researchers?

HEuRlSnC
PRCGRAMMING

PROJECT

Feigenbaum, Engalmore,
Brown, Hayes-Roth, Nii

L

HEUX GFOJP

suchmlm, comelii,
Brikley, Cmcey, .%myme.

Hayes-Roth, Keller

Knowledge Systems Laboratory Organization

227 E. H. Shortliffe

Knowledge Systems Laboratory Brochure 5P41 -RR00785-15

Current Research Projects

The following list of projects now under way within the four KSL research groups gives a brief
summary of the major goals of each project and lists the personnel (staff and Ph.D. candidates)
directly involved. More complete information on individual projects can be obtained from the
person indicated as the project contact. Inquiries should be addressed in care of:

Knowledge Systems Laboratory
Department of Computer Science
Stanford University
701 Welch Road, Building C
Palo Alto, CA 94304
415-723-3444

The Heuristic Programming Project

l Advanced Architectures Project -Design a new generation of computer architectures to
exploit concurrency in blackboard-based signal understanding systems.
PersonneE Edward A. Feigenbaum (contact), Nelleke Aiello, Harold Brown, Bruce Delagi
(DEC), Robert Engelmore, Hirotoshi Maegawa (Sony), Penny Nii, Sayuri Nishimura, Hiroshi
Okuno (NTT), James Rice, Nakul Saraiya.

l Blackboard Architecture Project-Integrate current knowledge about blackboard frame-
work problem-solving systems and develop a domain-independent model that includes
knowledge-based control processes.
PersonneZ: Barbara Hayes-Roth (contact), LMicheal Hewett, Penny Nii.

l Large Multi-use Knowledge Bases (LMKB)-Develop a knowledge base of scientific
and engineering facts, principles and methods, along with appropriate representations of the
knowledge, for multiple uses, including diagnosis and monitoring, planning, configuration, and
tutoring.
PersonneE Edward Feigenbaum (contact), Richard Keller, Scott Clearwater (LANL), Robert
Engelmore.

l Automated Software Design-Assist software designers in designing new program modules
via intelligent selection and modification from a library of existing software modules.
Personnel: Penny Nii(contact), Cordell Green (Kestrel Institute).

The HELIX Group

l PROTEAN-Study complex symbolic constraint-satisfaction problems in the blackboard
framework with application to protein structure det ermination from nuclear magnetic reso-
nance data.
Personnel: Bruce Buchanan (contact), Oleg Jardetzky (Stanford Magnetic Resonance Labo-
ratory), Russ Altman, Jim Brinkley, Enrico Carrara, Craig Cornelius, Bruce Duncan, Guido
Haymann-Haber, Olivier Lichtarge.

l NEOMYCIN/GUIDONZ-Develop knowledge representation and explanation capabilities
for computer-aided teaching of diagnostic reasoning. This work is moving to the Xerox Institute
for Research on Learning in Spring 1988.
Personnel: Bill Clancey (contact), Stephen Barnhouse, Bob London, Steve Oliphaut.

E. H. Shortliffe 228

5P41 -RR00785- 15 Knowledge Systems Laboratory Brochure

. Knowledge Acquisition Studies-Study the processes for transferring knowledge into a
computer program, including learning by induction, analogy, watching, chunking, reading, and
discovery.
Personnel: Bruce Buchanan (contact), 1Marti.n Chavez, Tze-Pin Cheng, Diana Forsythe, Haym
Hirsh, Richard Keller, Harold Lehmann, Eric Schoen, John Sullivan.

l Financial Resources Management -Develop a constraint-based expert system for financial
resource planning.
Personnel: Bruce Buchanan and Tom Rindfleisch (contacts), Craig Cornelius, Andy Gehnan,
Catherine Manago.

l Large Multi-use Knowledge Bases (LMKB)-See description under HPP.

The Medical Computer Science Group

. ONCOCIN-Develop knowledge-based systems for the administration of complex medical
treatment protocols such as those encountered in cancer chemotherapy.
Personnel: Ted ShortlilIe (contact), Charlotte Jacobs (Oncology), Larry Fagan, David Combs,
Robert Carlson, Christopher Lane, Curt Langlotz, Rick Lenon, Mark Musen, Janice Rohn,
Samson Tu, Cliff Wuliinan, Andrew Zelenetz.

. OPAL/PROTEGE-Develop graphics-based knowledge acquisition tools for clinical trials.
OPAL developed out of the ONCOCIN project to provide a method for specifying cancer
treatment experiments. The PROTEGE program is capable of creating OPAL-like knowledge
acquisition tools for various areas of medicine.
Personnel: Mark Musen (contact), Larry Fagan, Ted ShortlifIe, David Combs, Eric Sherman.

. Speech Input to Expert Systems-Develop multi-modal interface to expert systems, con-
centrating on a connected speech input device. Primary application will be extension to the
ONCOCIN graphical interface.
Personnel: Larry Fagan (contact), Bonnie Webber (University of Pennsylvania), Ted Shortliffe,
Ed Feigenbaum (HPP), Ellen Isaacs (Psycholinguistics), Clifford Wulfman.

l Physician’s Workstation-Develop advanced integrated workstation suitable for providing
decision support functions to clinicians in both inpatient and outpatient settings; initial work
in the area of cardiovascular disease prevention, with an emphasis on the management of lipid
disorders.
Personnel: Ted Shortliffe (contact), John Schroeder (Cardiology), David Maron (Heart Disease
Prevention Center), Jonathan King, Tom Rind&&h, Don Rucker, Joan Walton.

l Blackboard/Intensive Care Unit (BBICU)--Interpret data from the intensive care unit
and suggest therapy plans for patients with mechanical breathing support. Two aspects of
the project are: (1) representing the structure and function of the body and (2) combining
qualitative and quantitative reasoning techniques.
Personnel Larry Fagan (contact for qualitative/quantitative), Barbara Hayes-Roth (HPP -
contact for structure/function), Adam Seiver (Palo Alto Veterans Hospital), Lewis Sheiner
(University of California, San Francisco), Ingo Beinlich, Reed Hastings, Micheal Hewett, Noi
Hewett, Michael Kahn (UCSF), Nick Parlante (Palo Alto VA Hospital), John Reed, George
Thomsen, Rich Washington.

l Probabilistic Expert Systems- Develop pragmatic and theoretically sound methods for
the acquisition and computation of probabilistic information within medical expert systems.
Persunnel: Greg Cooper (contact), Ted Shortliffe, David Heckerman, Eddie Herskovits, Eric
Horvitz, Jaap Suermondt.

229 E. H. Shortliffe

Knowledge Systems Laboratory Brochure 5P41 -RR00785-15

The Symbolic Systems Resources Group (SSRG)

l SUMEX-AIM Resource-Develop and operate a national computing resource for biomed-
ical applications of arti&ial intelligence in medicine and for basic research in AI at KSL.
Personnek Tom Rindfleisch (contact), Rich AcufF, Mark Crispin, Frank Gilmurray, Michael
Marria, Christopher Schmidt, Andrew Sweer, Bob Tucker, Nicholas Veizades, Bill Yeager.

l AI Workstation and Network Systems -Develop network-based computing environments
for Lisp workstations including remote graphics and distributed computing.
Personnek SSRG staff

l Financial Resources Management-See description under HELIX.

Students and Special Degree Programs

Graduate students are an essential part of the research productivity of the KSL. Currently 36
students are working with our projects centered in Computer Science and another 21 students are
working with the MCS/MIS programs in Medicine. Of the 36 working in Computer Science, 16
are working toward Ph.D. degrees, and 20 are working toward M.S. degrees. A number of these
students are pursuing interdisciplinary programs and come from the Departments of Engineering,
Mathematics, Education, and Medicine. Of the 21 working in Medicine, 15 are working toward
Ph.D. degrees, and 6 are working toward MS. degrees.

Because of the highly interdisciplinary and experimental nature of KSL research, two special
degree programs have been established:

Medical Information Sciences (MIS)- an interdepartmental program approved by Stan-
ford University in 1982. It offers instruction and research opportunities leading to the M.S. or
Ph.D. degree in medical information sciences, with an emphasis on either medical computer sci-
ence or medical decision science. The program, directed by Ted ShortlifIe and co-directed by Larry
Fagan, is formally administered by the School of Medicine, but the curriculum and degree require-
ments are coordinated with the Dean of Graduate Studies and the Graduate Studies Committee of
the University. The program reflects our local interest in the interconnections between computer
science, artificial intelligence, and medical problems. Emphasis is placed on providing trainees with
a broad conceptual overview of the field and with an ability to create new theoretical and practical
innovations of clinical relevance.

Master of Science in Computer Science: Artificial Intelligence (MS:AI)- a termi-
nal professional degree offered for students who wish to develop a competence in the design of
substantial knowledge-based AI applications but who do not intend to obtain a Ph.D. degree. The
MS:AI program is administered by the Committee for Applied Artificial Intelligence, composed
of faculty and research staff of the Computer Science Department. Normally, students spend two
years in the program with their time divided equally between course work and research. In the
first year, the emphasis is on acquiring fundamental concepts and tools through course work and
project involvement. During the second year, students implement and document a substantial AI
application project.

Academic and Research Achievements

The primary products of our research are scientific publications on the basic research issues that
motivate our work, computer software in the form of the expert systems and AI architectures we
develop, and the students we graduate who continue AI research in other academic and industrial
laboratories.

E. H. Shortliffe 230

5P41 -RR00785-15 Knowledge Systems Laboratory Brochure

The KSL has averaged publishing more than 45 research papers per year in the AI literature,
including journal articles, theses, proceedings articles, and working papers.’ In addition, many
talks and invited lectures are given annually. In the past few years, 11 major books have been
published by KSL faculty, staff, and former students, and several more are in progress. Those
recently published include:

. Heuristic Reasoning about Uncertainty: An AI Approach, Cohen, Pitman, 1985.

. Readings in Medical Artificial Intelligence: The First Decade, Clancey and Shortliffe, Addison-
Wesley, 1984.

l Rule-Based Ezpert Systems: The MYCIN Ezpetiments of the Stanford Heuriafic Programming
Project, Buchanan and Shortliffe, Addison-Wesley, 1984.

l The Fifth Generation: Artificial Intelligence and Japan’s Computer Challenge to the World,
Feigenbaum and McCorduck, Addison-Wesley, 1983.

l Building Ezpert Systems, F. Hayes-Roth, Waterman, and Lenat, eds., Addison-Wesley, 1983.

l System Aids in Constructing Consultation Programa: EMYCIN, van Melle, UMI Research
Press, 1982.

l Knowledge-Based Systems in Artificial Intelligence: AM and TEIRESIAS, Davis and Lenat,
McGraw-Hill, 1982.

l The Handbook of Artificial Intelligence, Volume I, Barr and Feigenbaum, eds., 1981; Volume Ii,
Barr and Feigenbaum, eds., 1982; Volume III, Cohen and Feigenbaum, eds., 1982; Kaufmann.

l Applications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project, Lindsay,
Buchanan, Feigenbaum, and Lederberg, McGraw-Hill, 1980.

Our laboratory has pioneered in the development and application of AI methods to produce
high-performance knowledge-based programs. Programs have been developed in such diverse fields
as analytical chemistry (DENDRAL), infectious disease diagnosis and treatment (MYCIN), cancer
chemotherapy management (ONCOCIN), pulmonary function evaluation (PUFF), VLSI design
(KBVLSI/PALLADIO), molecular biology (MOLGEN) , and parallel machine architecture simu-
lation (CARE). Some of our systems and tools (e.g., UNITS, EMYCIN, and AGE) are now also
being adapted for commercial development and use in the AI industry.

Following our Iead in work on biomedical applications of AI and the development of the
SUMEX-AIM computing resource, a nationally recognized community of academic projects on
AI in medicine has grown up.

Central to all KSL research are our faculty, staff, and students. These people have been recog-
nized internationally for the quality of their work and for their continuing contributions to the field.
KSL members participate extensively in professional organizations, government advisory commit-
tees, and journal editorial boards. They have held managerial posts and conference chairmanships
in both the berican Association for Artificial Intelligence (AAAI) and the International Joint
Conference on Artificial Intelligence (IJCAI).

’ Copies of individual KSL publications may be obtained through the Stanford Department of Computer
Science publications office. The full collection of KSL reports is being published in microfiche by COMTEX
Scientific Corporation.

231 E. H. Shortliffe

Knowledge Systems Laboratory Brochure 5P41 -RR00785-15

Several KSL faculty and former students have received significant honors. In 1976, Ted Short-
LifIe received the Association of Computing Machinery Grace Murray Hopper award. In 1977, Doug
Lenat was given the IJCAI Computers and Thought award, and in 1978, Ed Feigenbaum received
the National Computer Conference Most Outstanding Technical Contribution award. In 1979 and
1981, Ted ShortlifIe’s book Computer-Based Medical Consultation: MYCIN was identified as the
most frequently cited work in the IJCAI proceedings. In 1982, Doug Lenat won the Tioga prize for
the best AAAI conference paper while Mike Genesereth received honorable mention. In 1983, Ted
Shortliffe was named a Kaiser Foundation faculty scholar, and Tom Mitchell received the IJCAI
Computers and Thought award. In 1984, Ed Feigenbaum was elected a fellow of the American As-
sociation for the Advancement of Science (AAAS), and he and Ted Shortme were elected fellows of
the American College of Medical Informatics. In 1986, Ed Feigenbaum was elected to the National
Academy of Engineering and in 1987, Ted Shortme was elected to the Institute of Medicine of the
National Academy of Sciences.

KSL Research Environment

Funding-The KSL is supported solely by sponsored research and gift funds. We have had
funding from many sources, including DARPA, NIH/NLM, ONR, NSF, NASA, and private foun-
dations and industry. Of these, DARPA and NIH have been the most substantial and long-standing
sources of support. All, however, have made complementary contributions to establishing an effec-
tive overall research environment that fosters interchanges at the intellectual and software levels
and that provides the necessary physical computing resources for our work.

Computing Resources-Under the Symbolic Systems Resources Group, the KSL develops
and operates its own computing resources tailored to the needs of its individual research projects.
Current computing resources are a networked mixture of mainframe host computers, Lisp work-
stations, and network utility servers, reflecting the evolving hardware technology available for AI
research. Our mainframe host is currently a DEC 2060 running TOPS-20 (this is the core of the
national SUMEX biomedical computing resource). Its network service functions will be replaced
shortly by a SUN-4 system running UNIX. Its routine computing functions (electronic mail, text
processing, and information retrieval) will be replaced by distributed user workstations. Our Lisp
workstations include 35 Xerox LlOO-series machines, 20 Texas Instruments Explorers, 6 Symbolics
3600-series machines, 3 SUN 31’75 workstations, and 5 Hewlett-Packard 9836 machines. We are
in the process of acquiring a significant number of Apple Macintosh II workstations for routine
computing support and many of these will also be configured to run Lisp programs. Network print-
ing, file, gateway, and terminal interface services are provided by dedicated machines including 2
VAX 11/750’s, a SUN 3/180;and numerous dedicated microprocessor systems. These facilities are
integrated with other computer science resources at Stanford through an extensive Ethernet and
to external resources through the ARPANET and TELENFT. Funding for these resources comes
principally from DARPA and NIH and hardware vendor gifts.

E. H. Shortliffe 232

5P41 -RR007851 5 Knowledge Systems Laboratory Brochure

Margaret Jacks Hall.
Electrical

Engrneering Pine Hall

Score 2060
Xerox 1100’s
Ether np
Xerox laser printers
Other CSD Equipment

Medical Center
SUMEX Machine Room

SUMW 2060
SUMEX 2020
Xerox 1108
Xerox 6037 fife server
Vax 750 tile server
NIT Elis’s
Xerox 1185
lmagen laser printer

I
Campus “link net”

cl R Repeater

El G Gateway

Medical School Office Building
Symbolic Systems Resources Group
Medical Computer Science Group

I

Xerox 1100’s
H-P 9636’s
n Explorers
lmagen laser printers
Xerox laser printer
Suns
Sun file server
Apple Macintoshes
Apple laser printer
Ether TIPS

ct+ G

Fl

is

G

Whelan Building (Welch Road)
HPP and HELIX

G

e

Silicon Graphics Iris
Sun
Vax 750 file server
Xerox 8033 file serfer
lmagen laser printers
Apple Macintoshes
Apple laser printer
Ether TIPS

.

Xerox Alto
Xerox 1132

SUMEX-AIM System and Local Area Network

233 E. H. Shortliffe

5P41 -RR00785 15

Appendix 6

Lisp Performance Studies

Lisp Performance Studies

Performance of Two Common Lisp Programs
on Various Workstation Systems

by Richard Acuff
Knowledge Systems Laboratory

Stanford University

*** DRAFT ***

1 - Introduction

In order to assist us in understanding performance of Lisp systems, we have
undertaken an informal survey of Common Lisp environments using two KSL software
packages. The data collection is close to complete but there has been very little
data analysis. Thus the data is included here with very little in the way of
observations or conclusions.

In this survey we have focused on execution speed which has long been a
differentiator among computer systems. The first comparison of two systems solving
the same problem (benchmarking) was probably done shortly after the creation of
the second computer, and benchmarking has been a primary differentiator among
computers systems ever since. However, execution speed benchmarks are only one
aspect of the systems, especially Lisp systems. Issues like programming and usage
environments, compatibility with other systems, ability to handle “large” problems,
and cost must also be considered.

The test software we used was SOAR and the BBI blackboard core. Both systems
were chosen primarily because they are implemented in pure Common Lisp, making
them extremely portable. Both are systems in daily use in the KSL and represent
two distinct research directions. SOAR is a heuristic search based general problem
solving architecture developed by Paul Rosenbloom and BBl is a blackboard problem
solving architecture developed by Barbara Hayes-Roth. Neither of these systems is
an intensive user of numeric computation. These systems were initially developed in
environments other than those tested and no attempt was made to optimize their
performance for any of these tests.

All runs of SOAR were done solving an eight-puzzle problem in one of three modes:

1. Mode “1,3” just solves the problem.

2. Mode “1,l” solves the problem while learning how to better solve it (this
mode takes the most time).

3. Mode “3,3“ solves the problem after learning (this mode takes the least
time).

SOAR’s source code consisted of a single 280k character file, plus two small files
containing the “rules” for the eight-puzzle problem: DEFAULT.SOAR at 24k
characters and EIGHT.SOAR at 10k characters. The runs and compilation were done
in separate instantiations of the Lisp environment.

237 E. H. Shortliffe

Lisp Performance Studies 5P41 -RR007851 5

All runs of BBl went through three cycles of adding IO items to the blackboard,
accessing those IO items, and then deleteing them. All references to BBI in this
document refer only to the “core” blackboard parts of the system and does not
include any other layers of the problem solving architecture, or the user interface.
The BBl source code used for the testing is spread over 10 files containing 295k
characters. Compilation, loading, and execution were all done in a single
instantiation of the Lisp environment.

2 - Systems Under Test

The systems to be tested were chosen based on their availability to the testers as
well as suspected potential usefulness in future programming efforts. Since we were
interested in “real world” results, we ran the tests on each machine in what seemed
to be its standard operating mode. In particular, if there are typically “background”
activities going on during normal operation, then those were allowed to continue
during the taking of these measurements. If code is typically executed from within
an editor or other special context, then that was done. No special process priority
altering or other attempt to optimize the execution was made unless noted in the
description of the systems.

It is worth noting that on almost all of the systems tested, virtual memory paging was
a neglibible part of the overall run time. Nor was it a significant factor during
compilation.

In the following descriptions “Code” refers to a short name used to indicate the
systems under test. Usually it is the model of the machine except where there is
more than one Lisp for a machine (as in the case of the Sun 3175) in which case a
letter is prefixed to indicate the Lisp being used. “Timing Template” indicates how
the information reported by the TIME function was recorded. “Elapsed” indicates the
total elapsed time, “run” indicates CPU time used, “gc” indicates time spent in
garbage collection, “user” and “system” distinguish between user mode and kernel
mode time, and “paging” indicates time waiting for virtual memory disk operations.
Though all of this information was recorded we have not reproduced it in this
document.

Code: 31260
Computer Type: Sun 31260
Operating System: Sun OS 3.4
Lisp: Lucid 2.0
Disk Configuration: 280MB
Swapping Size: 60MB
Memory Configuration: 8MB
Display Configuration: Color in mono mode
Other Configuration:
Special Comments: used :EXPAND 130 :GROWTH-RATE 130
Timing Template: elapsed (user-run + system-run)

Code: 3160
Computer Type: Sun 3/60
Operating System: Sun OS 3.4
Lisp: Lucid 2.1
Disk Configuration: SCSI 141 MB
Swapping Size: unknown
Memory Configuration: 24MB
Display Configuration: Hi Res Color in mono mode
Other Configuration:
Special Comments:

E. H. Shortliffe 238

5P41 -RR00785- 15

Appendix B

Lisp Performance Studies

Lisp Performance Studies

Performance of Two Common Lisp Programs
on Various Workstation Systems

by Richard Acuff
Knowledge Systems Laboratory

Stanford University

I DRAFT *

1 - Introduction

In order to assist us in understanding performance of Lisp systems, we have
undertaken an informal survey of Common Lisp environments using two KSL software
packages. The data collection is close to complete but there has been very little
data analysis. Thus the data is included here with very little in the way of
observations or conclusions.

In this survey we have focused on execution speed which has long been a
differentiator among computer systems. The first comparison of two systems solving
the same problem (benchmarking) was probably done shortly after the creation of
the second computer, and benchmarking has been a primary differentiator among
computers systems ever since. However, execution speed benchmarks are only one
aspect of the systems, especially Lisp systems. Issues like programming and usage
environments, compatibility with other systems, ability to handle “large” problems,
and cost must also be considered.

The test software we used was SOAR and the BBI blackboard core. Both systems
were chosen primarily because they are implemented in pure Common Lisp, making
them extremely portable. Both are systems in daily use in the KSL and represent
two distinct research directions. SOAR is a heuristic search based general problem
solving architecture developed by Paul Rosenbloom and BBl is a blackboard problem
solving architecture developed by Barbara Hayes-Roth. Neither of these systems is
an intensive user of numeric computation. These systems were initially developed in
environments other than those tested and no attempt was made to optimize their
performance for any of these tests.

All runs of SOAR were done solving an eight-puzzle problem in one of three modes:

1. Mode “1,3” just solves the problem.

2. Mode “1,l” solves the problem while learning how to better solve it (this
mode takes the most time).

3. Mode “3,3” solves the problem after learning (this mode takes the least
time).

SOAR’s source code consisted of a single 280k character file, plus two small files
containing the “rules” for the eight-puzzle problem: DEFAULTSOAR at 24k
characters and EIGHT.SOAR at 10k characters. The runs and compilation were done
in separate instantiations of the Lisp environment.

237 E. H. Shortliffe

Lisp Performance Studies 5P41 -RR00785- 15

All runs of BBl went through three cycles of adding 10 items to the blackboard,
accessing those 10 items, and then deleteing them. All references to BBl in this
document refer only to the “core” blackboard parts of the system and does not
include any other layers of the problem solving architecture, or the user interface.
The BBl source code used for the testing is spread over 10 files containing 295k
characters. Compilation, loading, and execution were all done in a single
instantiation of the Lisp environment.

2 - Systems Under Test

The systems to be tested were chosen based on their availability to the testers as
well as suspected potential usefulness in future programming efforts. Since we were
interested in “real world” results, we ran the tests on each machine in what seemed
to be its standard operating mode. In particular, if there are typically “background”
activities going on during normal operation, then those were allowed to continue
during the taking of these measurements. If code is typically executed from within
an editor or other special context, then that was done. No special process priority
altering or other attempt to optimize the execution was made unless noted in the
description of the systems.

It is worth noting that on almost all of the systems tested, virtual memory paging was
a neglibible part of the overall run time. Nor was it a significant factor during
compilation.

In the following descriptions “Code” refers to a short name used to indicate the
systems under test. Usually it is the model of the machine except where there is
more than one Lisp for a machine (as in the case of the Sun 3/75) in which case a
letter is prefixed to indicate the Lisp being used. “Timing Template” indicates how
the information reported by the TIME function was recorded. “Elapsed” indicates the
total elapsed time, “run” indicates CPU time used, “gc” indicates time spent in
garbage collection, “user” and “system” distinguish between user mode and kernel
mode time, and “paging” indicates time waiting for virtual memory disk operations.
Though all of this information was recorded we have not reproduced it in this
document.

Code: 3/260
Computer Type: Sun 31260
Operating System: Sun OS 3.4
Lisp: Lucid 2.0
Disk Configuration: 280MB
Swapping Size: 60MB
Memory Configuration: 8MB
Display Configuration: Color in mono mode
Other Configuration:
Special Comments: used :EXPAND 130 :GROWTH-RATE 130
Timing Template: elapsed (user-run + system-run)

Code: 3/60
Computer Type: Sun 3160
Operating System: Sun OS 3.4
Lisp: Lucid 2.1
Disk Configuration: SCSI 141 MB
Swapping Size: unknown
Memory Configuration: 24MB
Display Configuration: Hi Res Color in mono mode
Other Configuration:
Special Comments:

E. H. Shortliffe 238

5P41 -RR00785-15 Lisp Performance Studies

Timing Template: elapsed (user-run + system-run)

Code: 386
Computer Type: Compaq 386 (20Mhz 386)
Operating System: 386/1X 5.3 rev level 1.01 (Unix)
Lisp: Lucid 2.0
Disk Configuration: 134MB ESDI
Swapping Size: unknown
Memory Configuration: IOMB; 32kB 20ns cache
Display Configuration: terminal
Other Configuration: none
Special Comments: none
Timing Template: elapsed (run)

Code: 386T
Computer Type: Compaq 386 portable (Toaster)
Operating System: 386/1X 5.3 rev level 1.01 (Unix)
Lisp: Lucid 2.0
Disk Configuration: 40MB
Swapping Size: unknown
Memory Configuration: IOMB; no cache
Display Configuration: tiny LCD
Other Configuration: tiny display
Special Comments: portable versio of “386” above
Timing Template: elapsed (run)

Code: 41260
Computer Type: Sun 41280
Operating System: SunOS 3.2 Gamma
Lisp: Lucid 2.1
Disk Configuration: unknown
Swapping Size: unknown
Memory Configuration: 32MB
Display Configuration: Hi Res color in mono
Other Configuration:
Special Comments: used :EXPAND 130 :GROWTH-RATE 130
Timing Template: elapsed (user-run + system-run)

Code: 41280
Computer Type: Sun 41280
Operating System: SunOS 3.2 Gamma
Lisp: Lucid 2.1 beta
Disk Configuration: 417 (Eagle)
Swapping Size: 60MB
Memory Configuration: 8MB
Display Configuration: Hi Res mono
Other Configuration:
Special Comments:
Timing Template: elapsed (user-run + system-run)

Code: DEC-II
Computer Type: DEC MicroVax WGPX
Operating System: VMS
Lisp: VaxLisp
Disk Configuration: 2 x 159MB
Swapping Size: 3k pg page, 8k pg swap

239 E. H. Shortliffe

Lisp Performance Studies 5P41 -RR00785-15

Memory Configuration: 16MB
Display Configuration: GPX
Other Configuration:
Special Comments:
Timing Template: elapsed - gc-elapsed (run - gc-run)

Code: DEC-III
Computer Type: DEC MicroVax III (3500)
Operating System: VMS
Lisp: VaxLisp
Disk Configuration: (RD53)
Swapping Size: unkown
Memory Configuration: 16MB
Display Configuration:
Other Configuration:
Special Comments:
Timing Template: elapsed - gc-elapsed (run - gc-run)

Code: E-3/75
Computer Type: Sun 3175
Operating System: SunOS 3.1
Lisp: Franz Extended Common Lisp 2.0
Disk Configuration: 70MB SCSI
Swapping Size: 50MB local
Memory Configuration: 28MB
Display Confiyuration: standard resolution mono
Other Configuration: Files on Sun 3/180 NFS server
Special Comments: Under suntools
Timing Template: elapsed (run + gc)

Code: EXPl
Computer Type: Texas Instruments Explorer I
Operating System: Explorer Lisp Release 3.0+
Lisp: Explorer Lisp Release 3.0+
Disk Configuration: 2 x 140MB SCSI
Swapping Size: 80MB
Memory Configuration: 8MB
Display Configuration: 1024 x 768 mono
Other Configuration:
Special Comments: TGC (incremental generation scavenging GC) on
unless otherwise noted
Timing Template: elapsed - paging

Code: EXP2
Computer Type: Texas Instruments Explorer II
Operating System: Explorer Lisp Release 3.0+
Lisp: Explorer Lisp Release 3.0+
Disk Configuration: 2 x 140MB SCSI
Swapping Size: 80MB
Memory Configuration: 16MB
Display Configuration: 1024 x 768 mono
Other Configuration:
Special Comments: TGC (incremental generation scavenging GC) on
unless otherwise noted
Timing Template: elapsed - paging

E. H. Shortliffe 240

5P41 -RR00785-15 Lisp Performance Studies

Code: HP
Computer Type: Hewlett .Packard 9000/350
Operating System: Unix
Lisp: HP Lisp 1.0
Disk Configuration: 130MB (7958)
Swapping Size: unknown
Memory Configuration: 16MB
Display Configuration: color
Other Configuration: under gnuemacs
Special Comments:
Timing Template: elapsed - run

Code: K-3/75
Computer Type: Sun 3/75
Operating System: SunOS 3.1
Lisp: Kyoto Common Lisp “September 16, 1986”
Disk Configuration: 70MB SCSI
Swapping Size: 50MB local
Memory Configuration: 28MB
Display Configuration: standard resolution mono
Other Configuration: Files on Sun 31180 NFS server
Special Comments: Under suntools
Timing Template: elapsed - run

Code: L-3175
Computer Type: Sun 3/75
Operating System: SunOS 3.1
Lisp: Lucid 2.0
Disk Configuration: 70MB SCSI
Swapping Size: 50MB local
Memory Configuration: 28MB
Display Configuration: standard resolution mono
Other Configuration: Files on Sun 3/180 NFS server
Special Comments: used :EXPAND 90 :GROWTH-RATE 90
Timing Template: elapsed (user-run + system-run)

Code: mX
Computer Type: Texas Instruments microExplorer
Operating System: Explorer Lisp 4.0 beta
Lisp: Explorer Lisp 4.0 beta
Disk Configuration: 1 OOMB Rodime
Swapping Size: 60MB
Memory Configuration: 12MB mX processor; 2MB Mac II
Display Configuration: 19” (1024 x 768) Moniterm Viking
Other Configuration: Apple EtherTalk
Special Comments:
Timing Template: elapsed - paging

Code: RT
Computer Type: IBM RT/APC
Operating System: AIX 2.1.2 (Unix)
Lisp: 2.0.5 (Lucid 1.01)
Disk Configuration: “Fast” EESDI controller; 3 x 70MB
Swapping Size: 80k x 512kB blocks (40,960MB)
Memory Configuration: 16MB of “fast” memory
Display Configuration: Moniterm 1024 x 768 mono

241 E. H. Shortliffe

Lisp Performance Studies 5P41 -RR00785-15

Other Configuration: AFT floating point unit; GSL windows
Special Comments:. Used :EXPAND 69 to get 6MB semispace; This
should be the fastest RT version now available
Timing Template: elapsed (user-run + system-run)

Code: Sym
Computer Type: Symbolics 3645
Operating System: Symbolics Release 6.1
Lisp: Symbolics Release 6.1
Disk Configuration: 368MB
Swapping Size: 200MB
Memory Configuration:
Display Configuration: 8MB
Other Configuration: FPA, no color
Special Comments: EGC on
Timing Template: elapsed - paging

Code: XCL
Computer Type: Xerox 1186
Operating System: Xerox Lisp, Lyric release
Lisp: Xerox Lisp, Lyric release
Disk Configuration: 40MB
Swapping Size: 16MB
Memory Configuration: 3.5MB
Display Configuration: 19” mono
Other Configuration:
Special Comments:
Timing Template: elapsed - gc - paging

3 - Compilation and Execution

For both BBI and SOAR the time taken to compile the system and make a standard
run was measured. Here are those results (all numbers are seconds):

BBl SOAR
Code Compile Run Compile Run
31260 540 ;5 687 171
3/60 551 569 218
386 355 386 142
386T 416 z: 479 175
41260 324 5: 307 70
41280 482 523 105
DEC-II 1774 207 1227 1908
DEC-III 633 63 423 476
E-3175 444 211 450 500
Expl 327 87 520 400
Exp2 96 29 162 146
HP 235 115 237 229
L-3175 919 1365 756
K-3/75 1234 :: 1040 297
Mac11 349 254 Not available1
mX 242 31 242 219
RT 586 75 574 206
Sym 257 111 252 210
XCL 1927 559 1800 1613

‘We were not able to get SOAR to run properly in Allegro Common Lisp 1.0 or 1 .l.

E. H. Shortliffe 242

5P41 -RR00785-15 Lisp Performance Studies

For convenience of viewing, these numbers are graphed in Figures 20 and 21. The
system types are sot-fed into order of best run time for SOAR and BBl separately to
facilitate comparative observation.

4 - Effect of Compiler Optimize Settings on BBl

We were also interested in the effect of two of Common Lisp’s compiler optimizer
settings, SPEED and SAFETY. These switches have four settings, 0 through 3, with
0 being the highest priority. Thus settings of SAFETY 0 and SPEED 3 should allow
the compiler to produce the fastest code, while SAFETY 3 and SPEED 0 would
result in conservative code, perhaps with more type checking, etc. We comipiled
and ran BBI with 4 settings of these switches:

1. The system default

3. (PROCLAIM ‘(OPTIMIZE (SAFETY 0) (SPEED 3)))

3. (PROCLAIM ‘(OPTIMIZE (SAFETY 3) (SPEED 0)))

4. (PROCLAIM ‘(OPTIMIZE (SAFETY 2) (SPEED 3)))

Figures 22 and 23 show the effect of these settings on the compilation and run
times of the BBl test. Here are the numbers:

Default Safe 0, Spd 3 Safe 3, SDd 0 Safe 2. Spd 3
Code Comp

3/260 540
3160 551
386 355
386T 416
41260 324
41280 482
DEC-II 1774
DEC-III 633
E-3/75 444
Expl 327
Exp2 96
HP 235
K-3175 1234
L-3/75 919
Mac11 349
mX 242
RT 586
Sym 257
XCL 1927

Run
62
73

ii

z:
207
63
211
87
29
115
96
90
254

%!
111
559

Comp
524
537
332
408
318
483
1987
635
403
318
117
250
1815
1056
365
249
587
281
2022

Run
62
72
47
54
46
34
206

z5

E
113
165
90
258
28
76
109
543

Comp
532
444
271
341
229
385
2245
732
469
314
111
235
1379
1054
354
232
508
256
2230

Rbn
69 %YP
76 540

El 339 410

:; 309 492
231 3094

::6 990 443
90 357
28 121
141 247
147 1171
127 910
261 363
32 239
77 595
110 262
559 2020

Run
62
72

ti

3:
236
70
206
83
26
118

iii
259
35
75
111
556

5 - Effect of Output Reduction on SOAR

We had previously noted that some systems were able to run the eight-puzzle
benchmark much faster when the volumous typeout produced was reduced. Figure
24 shows the difference between run times of the 1,3 mode solution of the eight
puzzle with full tracing versus no tracing. The numerical data follows:

243 E. H. Shortliffe

Lisp Performance Studies 5P41 -RR00785-15

Code Normal Reduced

3/260 49
3160

ii

386
::

386T 52 :;

4/260 23 41280 35 ::
DEC-II 351 283
DEC-III 95 76
E-3/75 124 109
Expl 90 63
ExpP
HP i’: ::
K-3/75 186 136
L-3/75 82 67
mX
RT 2 ii
Sym 55 40
XCL 473 390

6- Future Work

Now that this data is collected it is our intention to write it up in a technical report,
including comoarisons with the Gabriel Benchmarks and remarks on certain surprising
facts that this work has turned up. This report will be made widely available to the
AIM community to assist future descisions in the use of Lisp systems.

E. H. Shortliffe 244

5P41 -RR00785-15 Lisp Performance Studies

Exp2
mX

41280
386

3861
4/260

o 31260
: DEC-III
: 3160
% RT
‘; Expl
4 L-3/75
$ K-3/75

Sym
I-P

DEC-II
E-3175

Macll
xa

0 50 100 150 200 250 300 350 400 450 500 550
BBl Run Tlms (see)

41260
41280

386 n Mode 1,3
Exp2

3Q60
386T

d syI
g 3/60
g mX
5 I+
$ L-3l75

Expl
DEC-III
E-3175
K-3n5

xa
DEC-II

0 200 400 600 800 1000 1200 1400 1600 1800 2000
BOAR Total Run Time (sac)

Figure 20: Run Times for BBl and SOAR

245 E. H. Shortliffe

Lisp Performance Studies 5P41 -RR00785-15

ExpP
mX

41280
386

386T
4l260

* 3l260
3 ” DEC-III

‘E Expl
a L-3/75
m” K-3175

Sym
I-P

DEC-II
E-3I75

Mad
xa

BBl Complle Time (sac)

41260
4i280

386
Exp2

31260
386T

:: FIT
s

g
Sym
3160

’ mX
5 I-P
g L-3ff5

Expl
DEC-III
E-3175
K-3175

xa
DEC-II

0 200 400 600 800 1000 1200 1400 16bO lab0 2000
BOAR Compile Time (set)

E. H. Shortliffe

Figure 21: Compilation Times for BBl and SOAR

246

5P41 -RR007851 5 Lisp Performance Studies

Exp2

mX

306

386T

4/260

31260

8
DEC-III

0”
B 3160

I-”
E RT
2
P
v, Expt

L-3/75

K-3175

DEC-II

E-3175

Macll

xa

n Default Run
q Safe 0, Spd 3

Safe 3, Spd 0
El Safe 2, Spd 3

0 50 100 150 200 250 so0 3iu 400 450 500 550
961 Run Tlmas (90~)

Figure 22: Run Times for BBl under Various Compiler Settings

247 E. H. Shortliffe

Lisp Performance Studies 5P41 -RR00785-15

mX

366

366T

41260

31260

DEC-III
4

n Default ,Compile
q Safe 0, Spd 3

Safe 3, Spd 0
q Safe 2, Spd 3

Sym

DEC-II

1000 1500 2000 2500 3000
BBl Compllrtlon Time (see)

Figure 23: Compilation Times for BBl under Various Compiler Settings

E. H. Shortliffe 248

5P41 -RR00785-15
Lisp Performance Studies

366

Exp2

31260

366T

p” Sym
0”
g 3160

F

I
5 mX
s

I-P

L-3ff5

4/260 n Mode 1,3
41200 a Mode 1,3 nt

Expl

DEC-III

K-3/75

xa

DEC-II
I

SOAR Run Time (see)

Figure 24: Differences Between Normal and Reduced Ouput SOAR Run

249 E. H. Shortliffe

